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ABSTRACT

Background. We used a large population-based data set to

create a clinical decision support system (CDSS) for real-

time estimation of overall survival (OS) among colon

cancer (CC) patients. Patients with CC diagnosed between

1969 and 2006 were identified from the Surveillance Epi-

demiology and End Results (SEER) registry. Low- and

high-risk cohorts were defined. The tenfold cross-valida-

tion assessed predictive utility of the machine-learned

Bayesian belief network (ml-BBN) model for clinical

decision support (CDS).

Methods. A data set consisting of 146,248 records was

analyzed using ml-BBN models to provide CDS in esti-

mating OS based on prognostic factors at 12-, 24-, 36-, and

60-month post-treatment follow-up.

Results. Independent prognostic factors in the ml-BBN

model included age, race; primary tumor histology, grade

and location; Number of primaries, AJCC T stage, N stage,

and M stage. The ml-BBN model accurately estimated OS

with area under the receiver-operating-characteristic curve

of 0.85, thereby improving significantly upon existing

AJCC stage-specific OS estimates. Significant differences

in OS were found between low- and high-risk cohorts (odds

ratios for mortality: 17.1, 16.3, 13.9, and 8.8 for 12-, 24-,

36-, and 60-month cohorts, respectively).

Conclusions. A CDSS was developed to provide individ-

ualized estimates of survival in CC. This ml-BBN model

provides insights as to how disease-specific factors influ-

ence outcome. Time-dependent, individualized mortality

risk assessments may inform treatment decisions and

facilitate clinical trial design.

Colon cancer is the most common gastrointestinal tract

malignancy in the United States, and it is the second

leading cause of cancer-related mortality in the Western

World.1 This disease affects over a million people each

year worldwide.1 The primary treatment of non-metastatic

colon cancer is surgical resection; however, disease in up

to one-third of patients with node-negative disease under-

going potentially curative operation recurs.1,2 Adjuvant

systemic therapy is considered in high-risk node-negative

and is indicated in node-positive patients with the specific

aim of reducing disease recurrence and cause-specific

mortality. As ethnic and socioeconomic disparities impact
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oncological outcome in colon cancer, particularly among

blacks and Hispanics, treatment-planning considerations

expand beyond tumor stage-specific criteria.3,4

The current ‘‘gold standard’’ for defining disease extent

and guiding treatment is the American Joint Committee on

Cancer (AJCC) tumor-node-metastasis (TNM) staging

system. This system is based on anatomic pathology,

presently regarded as the most important determinant of

oncological outcome.5 Although the principal prognostic

variables of this staging system are depth of primary tumor

penetration (T stage) and number of regional nodes

involved by tumor (N stage), the Hindgut Task Force in its

revision of the sixth edition of the AJCC TNM staging

system recognized the importance of: (1) the differences in

prognosis amongst T4 subsets (visceral peritoneal

involvement versus other organ adherence/invasion), (2)

the prognostic impact of both number of tumor-involved

nodes and total nodes assessed pathologically, (3) interplay

between number of nodes involved and depth of tumor

penetration of the colon wall or adjacent structures, and (4)

the prognostic importance of satellite tumor deposits.6

Although the evidence published to date does not support

the use of molecular markers in the AJCC TNM staging

system, the current edition also recognizes the heteroge-

neity of tumor biology and outcome within each stratum.

This subcategorization within each stage stratum and cat-

egorical binning of continuous variables contribute to the

limited predictive value of the AJCC TNM system in

estimating overall survival, and the wide variability that

may be demonstrated amongst patients within each AJCC

stage.

An individual cancer patient’s prognosis is typically

estimated based on published consolidated data from large,

heterogeneous study populations. Based on review of the

published oncology literature, the Hindgut Task Force

recognized important evidence—informed differences in

oncological outcome amongst T4 tumors based on extent

of disease. Further the Task Force noted: (1) worse prog-

nosis among T1 and T2 tumors without regional nodal

metastasis, but with satellite tumor deposits, (2) a signifi-

cant influence of more penetrating tumors in stage II (node-

negative) patients, and (3) a more favorable outcome

among thinner than thicker primary tumors when control-

ling for number of pathologically involved nodes. This

latter finding necessitated reclassification within the AJCC

stage III (node positive) group.

Despite these apparent improvements in AJCC stage

subclassification, a number of unanswered questions

remain to be answered. How does patient ethnicity and

tumor biology affect outcome, independent of disease stage

and variability in treatment? Why do certain colon cancers

(specifically node-negative) recur after apparently curative

resection? What patients should be selected for more

aggressive adjuvant systemic therapy, and which patients

are less likely to respond to treatment and more likely to

experience unnecessary treatment-related risks for little

therapeutic gain? While the answers to some of these

questions may remain unknown, multivariate statistical

modeling may provide key insights into tumor behavior

and provide survival estimates specific to an individual

patient.

A machine-learned Bayesian belief network (ml-BBN)

is a hierarchical network of associations between clinical

factors in a registry data set that provides multivariate

mapping of complex data. This is achieved through a

straightforward, transparent graphical map. The ml-BBN

model uses conditional dependence to provide a probability

estimate of an outcome of interest. The model represents

the dependence between independent variables associated

with the outcome of interest. Importantly, it protects

against overinterpretation of the data. Hence, the ml-BBN

model encodes the joint probability distribution of all

variables in a multidimensional data domain using a net-

work of conditional probabilities.

The utility of Bayesian classification for developing

clinical decision support (CDS) tools lies in the ability of

the model to be queried. These model queries provide case-

specific relative risk information for a given patient for an

oncological outcome of interest. Clinical decision support

systems (CDSS) based on ml-BBN models have been

developed for a number of solid tumors in order to improve

prognostic estimates and to guide clinical decision making

for appropriate treatment and follow-up surveillance test-

ing.7–10 These CDSS have further assisted physicians in

counseling of patients based on individualized estimates of

prognosis.11

We sought to apply ml-BBNs to a large population in an

effort to accurately derive individualized survival estimates

using readily available case-specific clinical and patho-

logical information. This study evaluated the feasibility of

using ml-BBNs to provide real-time estimates of overall

survival. These estimates were based on factors of prog-

nostic significance for colon cancer in a retrospective

analysis of data from the largest population-based cancer

registry in the United States, the SEER Program of the

National Cancer Institute (NCI). We found that the colon

cancer ml-BBN developed in this study provides accurate

time-dependent, individualized assessment of mortality

risk.

METHODS

We used the SEER program of the National Cancer

Institute (NCI), which comprises 17 registries across the

United States and contains all patients diagnosed with
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malignant colon cancer from 1969 to 2006. Of the original

437,892 records, a subset of 146,248 cases was selected for

analysis based on these criteria: (1) diagnosis data sub-

sequent to 2000 and (2) records complete. Staging was

based on the American Joint Commission on Cancer

(AJCC) sixth edition (after 2004) or third edition (between

2000 and 2004) TNM system.12–15 TNM data were mapped

to a simplified set of criteria consisting of M stage 0 or 1, N

stage 0, 1, or 2, and T stage 1, 2, 3, or 4 or mapped to null

when values could not be clearly mapped from AJCC third

edition. As a result of our study set selection criteria, no

variable had greater than 20 % missing data. SEER values

for missing or unknown were all mapped to null and a data

imputation method was applied. The imputation method

used was a passive method specific to Bayesian learning

referred to as ‘‘truncation’’ in which missing data were

truncated from training records, and those data that were

present used for learning structure and distributions.16

Follow-up time and overall survival (OS) time were used to

develop survival cohorts for ml-BBN modeling. To eval-

uate OS at different clinically relevant time points, 4

subsets were created. These subsets were based on follow-

up time of 12, 24, 36, and 60 months. Cases within our

study set were included in a follow-up cohort if they met 1

of 2 criteria: survival time in excess of the cohort window,

or time to mortality less than that of the cohort window.

Statistical and Modeling Methods

Basic descriptive analysis of the study cohorts was

performed using R:A Language and Environment for Sta-

tistical Computing.17 Each cohort (12, 24, 36, and

60 months) was analyzed and clinical and pathological

factors tabulated. Differences in distributions between

subjects alive and dead within each follow-up cohort were

analyzed with the t test (continuous variables), or the chi-

squared test (categorical variables).

We used a stepwise modeling process as previously

described.9,10 Briefly, the stepwise process consists of: (1)

preliminary modeling, (2) global modeling, and (3) focused

or final modeling. This stepwise process has been used

previously to produce effective, validated CDSS

models.10,11,18,19

BBNs were created using machine-learning software

(FasterAnalytics, DecisionQ Corp., Washington, DC). The

machine-learning program uses heuristic algorithms to

allow the computer to learn domain structure natively from

data.20–22 The software applies machine-learning algo-

rithms to training data sets to learn BBN structures. BBNs

are directed acyclic graphs of conditional dependencies

between variables that allow users to understand how dif-

ferent variables interact. The ml-BBN allows calculation of

posterior probability of an outcome (overall survival) given

prior knowledge (e.g., clinical or pathological vari-

ables).22,24 Our ml-BBN focuses on posterior estimates of

mortality given known demographic, staging, pathological,

treatment, and biomarker information.

A tenfold cross-validation was performed, and receiver

operating characteristic (ROC) curves developed for each

model. The data was randomized into 10 training sets

containing 90 % of the data with 10 corresponding test sets

containing the remaining 10 %. New ml-BBN models were

created with the training sets and tested with the corre-

sponding test set. An ROC curve was created for each test

set and the area under the ROC curve (AUC) and 95 %

confidence intervals (95 % CIs) calculated, creating a

measure of how well the model could classify OS of an

individual patient. To further validate the models, we also

performed Kaplan–Meier analysis using the estimated

mortality probabilities produced by the BBN as an addi-

tional validation method.

RESULTS

Using our inclusion criteria resulted in these study

cohorts: the 12-month set contains 128,324 cases, the

24-month set contains 114,040 cases, the 36-month set

100,733 cases, and the 60-month set contains 77,402 cases.

Overall mortality for each study cohort was 25 % at

12 months, 38 % at 24 months, 50 % at 36 months, and

73 % at 60 months, respectively. Descriptive statistics are

described in Table 1a, b. The tabulated data is stratified by

study cohort.

Table 2a, b provides comparative distributions by study

cohort (12, 24, 36, and 60 months) between subjects who

were deceased and living at the selected follow-up time for

each cohort. The differences in distribution of the deceased

and the living group for each covariate are statistically

significant (p \ .001).

A tenfold cross validation was used to assess ml-BBN

model robustness in estimating predictive value for mor-

tality. Each study cohort model, as cross-validated, is

strongly predictive. The AUCs for each of the 12-, 24-, 36-,

and 60-month cohorts are 0.85 with 95 % CIs of (0.84,

0.87), (0.84, 0.86), (0.84, 0.87), and (0.84, 0.87), respec-

tively. Positive predictive values for mortality at 12, 24, 36,

and 60 months are, 74, 80, 82, and 84 %, respectively.

Negative predictive values for mortality at 12, 24, 36, and

60 months are, 85, 80, 74, and 65 %, respectively. Sensi-

tivity (95 % CIs) for 12, 24, 36, and 60 months are 51 %

(51–52 %), 63 % (61–64 %), 70 % (67–72 %), and 89 %

(88–89 %), respectively. Specificity (95 % CIs) for the 12,

24, 36, and 60 month cohorts are 94 % (94–94 %), 90 %

(90–91 %), 85 % (83–86 %), and 56 % (54–57 %),

respectively. PPV, NPV, sensitivity, and specificity were

evaluated using the ‘‘most likely’’ estimate for mortality
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TABLE 1 Patient characteristics by cohort

A.

12-month cohort (%) 24-month cohort (%) 36-month cohort (%) 60-month cohort (%)

N = 128,324 N = 114,040 N = 100,733 N = 77,402

Sex

Female 52.2 52.3 52.5 52.8

Male 47.8 47.7 47.5 47.2

Tumor grade

1 8.7 8.5 8.1 7.3

2 57.1 56.4 55.5 52.9

3 17.9 18.2 18.6 20.1

4 0.9 0.9 0.9 1.0

AJCC TNM path T

1 12.5 12.1 11.5 9.6

2 10.4 10.0 9.4 7.8

3 44.3 43.6 42.6 39.7

4 20.0 21.1 22.7 27.7

AJCC TNM path N

0 63.8 63.5 62.8 59.7

1 19.9 19.7 19.5 19.6

2 13.3 13.5 14.0 16.1

AJCC TNM path M

0 78.1 77.1 77.7 69.1

1 19.3 20.5 22.3 28.0

Number of primaries

1 89.7 89.4 89.2 89.2

2 9.3 9.6 9.7 9.7

3 0.9 0.9 1.0 1.0

4 0.1 0.1 0.1 0.1

Tumor histology

Adenocarcinoma 95.2 94.9 94.6 93.7

Other 4.8 5.0 5.4 6.3

Tumor location

Left colon 9.2 9.2 9.1 8.9

Multiple 6.7 7.2 7.9 9.6

Right colon 46.3 46.1 46.2 46.3

Sigmoid colon 29.6 29.3 28.7 27.1

Transverse colon 8.3 8.2 8.2 8.2

Race/ethnicity

Hispanic 8.3 8.0 7.8 7.5

White 81.8 82.0 82.0 82.2

Black 10.8 10.9 11.0 11.4

Asian 4.0 3.9 3.8 3.6

Other 3.4 3.3 3.1 2.9

Deaths

Yes 25.2 38.3 49.8 72.8

No 74.8 61.8 50.2 27.2

Surgical procedure

None 11.8 12.9 14.2 17.9

Other 5.3 5.3 5.2 4.5
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([50 %) to segment cases into high- and low-risk cohorts.

This threshold was selected to provide a comparable metric

across all models and to minimize the trade-off between

sensitivity and specificity. Further, the difference in sur-

vival between the high-risk and low-risk cohorts were

significant (p \ .001) using the log-rank test. These sig-

nificant differences in OS between low- and high-risk

cohorts are reflected in the odds ratios for mortality: 17.1,

16.3, 13.9, and 8.8 for 12-, 24-, 36-, and 60-month cohorts,

respectively.

We evaluated first-degree associates (independently

predictive variables in the ml-BBN models) of mortality at

12, 24, 36, and 60 months. These relationships are

important because they show variables that can be used to

calculate mortality at each time point on a per-patient basis

(individualized CDSS). The final ml-BBN model structures

are shown in Figs. 1, 2, 3 and 4. Each box in the figure

represents a feature within our study data set, while the arcs

(edges) represent patterns of conditional dependence

between features and allow one to understand which

combinations of features provide the posterior estimate of

mortality and can be read in conjunction with Table 3.

This colon cancer ml-BBN model structure shows how

different variables in the model associate with one another

to calculate estimates for OS. A key finding in this study is

seen in Table 3, which shows time-dependent influence of

key variables that form first-degree associations with

oncological outcome (OS). Specifically, Table 3 describes

those ml-BBN model variables that can be used to estimate

subject-specific mortality at different times following ini-

tial treatment.

The ml-BBN provides clinically relevant input on those

pieces of clinical and pathological information, which are

most critical and which are most useful across multiple

follow-up time periods. For example, the 12- and 24-month

models have exactly the same structure. There were fewer

first-degree independently predictive variable associations

with mortality in the 36-month model than in the 12- or

24-month models, and even fewer first-degree associations

in the 60-month model. As we look at longer survival times

posttreatment for primary colon cancer, fewer factors

ultimately influence long-term survival. However, as the

first-degree variable associations differ, the ml-BBN

models remain similar in overall structure.

TABLE 1 continued

A.

12-month cohort (%) 24-month cohort (%) 36-month cohort (%) 60-month cohort (%)

N = 128,324 N = 114,040 N = 100,733 N = 77,402

Palliative 0.3 0.2 0.2 0.2

Partial colectomy 77.9 76.6 75.1 71.4

Total colectomy 3.0 3.1 3.2 3.3

B.

12-month cohort (%) 24-month cohort (%) 36-month cohort (%) 60-month cohort (%)

N = 128,324 N = 114,040 N = 100,733 N = 77,402

Range % Range % Range % Range %

Regional nodes examined

B2 24.9 B2 26.1 B1 24.6 0 27.2

3–9 26.1 3–9 26.5 2–8 24.6 1–8 25.1

10–16 25.7 10–16 25.0 9–14 26.4 9–14 22.2

17? 20.9 17? 19.8 15? 21.6 15? 21.9

Regional nodes positive

0 64.5 0 64.2 0 63.5 0 60.6

1 9.0 1 8.9 1 8.7 1–2 14.4

2–3 10.1 2–3 10.1 2–3 10.1 3–6 12.3

4? 13.3 4? 13.5 4? 14.0 7? 8.1

Age at diagnosis (years)

B61 27.3 B61 26.4 B60 25.3 B63 26.3

62–72 25.5 62–72 25.3 61–71 22.2 64–74 26.0

73–80 23.7 73–80 24.1 72–80 27.1 75–82 25.1

81? 23.5 81? 24.2 81? 25.4 83? 22.6
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It is noteworthy that from the AJCC TNM staging sys-

tem, T- and M-stage covariates are both first-degree

variables in all the survival windows. Nodal status is sig-

nificant in all survival windows; however, the number of

positive nodes is the first-degree associate in all models

tested except for the 60-month model; in this late time

period model number of positive nodes is supplanted by

AJCC TNM N stage. In all the ml-BBN models, number of

TABLE 2 Deceased patient characteristics by cohort

A.

12-month cohort (%) 24-month cohort (%) 36-month cohort (%) 60-month cohort (%)

N = 128,324 N = 114,040 N = 100,733 N = 77,402

Dead Alive Dead Alive Dead Alive Dead Alive

Gender

Female 54.5 51.5 53.9 51.2 53.5 51.5 53.2 51.8

Male 45.5 48.5 46.1 48.7 46.5 48.5 46.8 48.2

Tumor grade

1 4.7 10.0 4.9 10.7 5.3 10.8 5.6 11.7

2 40.3 62.7 44.5 63.7 46.9 64.0 48.8 63.7

3 23.2 16.2 23.5 14.9 23.0 14.3 22.3 14.1

4 1.6 0.7 1.5 0.6 1.4 0.5 1.3 0.4

AJCC TNM Path T

1 5.7 14.8 5.8 16.0 5.9 17.0 6.3 18.2

2 3.7 12.7 4.1 13.7 4.6 14.3 5.2 14.8

3 26.7 50.2 30.3 51.8 32.6 52.4 35.0 52.4

4 40.7 13.0 40.0 9.4 38.5 7.0 36.1 5.0

AJCC TNM Path N

0 56.0 66.4 53.7 69.6 53.5 72.1 54.2 74.4

1 16.5 21.1 18.7 20.3 19.6 19.4 20.1 18.4

2 18.7 11.5 20.5 9.1 20.5 7.6 19.8 6.2

AJCC TNM Path M

0 48.6 88.1 51.9 92.7 59.3 95.9 58.4 97.7

1 45.3 10.5 43.1 6.5 40.7 4.1 37.6 2.3

Number of primaries

1 93.8 88.4 92.5 87.5 91.5 86.9 90.3 86.1

2 5.7 10.5 6.9 11.2 7.8 11.6 8.8 12.2

3 0.5 1.1 0.6 1.2 0.7 1.3 0.8 1.4

4? 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2

Tumor histology

Adenocarcinoma 88.5 97.5 90.6 97.6 91.5 97.6 92.2 97.8

Other 10.2 1.2 8.2 1.0 8.5 2.4 6.7 0.9

Tumor location

Left 8.1 9.6 8.4 9.6 8.5 9.6 8.7 9.5

Multiple 17.7 2.9 14.6 2.6 13.3 2.4 12.3 2.2

Right 45.0 46.8 46.3 45.9 46.5 45.8 46.6 45.5

Sigmoid 21.1 32.4 22.5 33.5 23.4 33.8 24.3 34.5

Transverse 8.1 8.3 8.2 8.3 8.2 8.3 8.1 8.3

Race/ethnicity

Hispanic 7.4 8.6 7.5 8.4 7.5 8.1 7.5 7.7

White 81.8 81.9 81.4 82.3 81.5 82.6 81.6 83.6

Black 12.7 10.2 12.6 9.9 12.5 9.6 12.3 9.0

Asian 2.9 4.3 3.2 4.3 3.3 4.3 3.3 4.2
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positive nodes and AJCC TNM N stage are associated with

one another. Importantly, unlike logistic regression models

the absence of a first-degree associated variable does not

necessarily render the ml-BBN model unusable, as other

model features recursively estimate survival even when

lacking certain case-specific variables.

DISCUSSION

Machine-learned BBNs present certain unique benefits

pertaining to survival modeling of registry cohorts. First is

their ability to represent complex, nonlinear relationships

in a straightforward, graphical manner. Second, ml-BBNs

support patient-specific survival estimates. Third, these

CDSS provide the clinician and patient with a user-friendly

interface. Prior research has shown machine-learned BBNs

to be robust.8,10,11,21,23 Furthermore, ml-BBNs have been

shown to be an efficient way to represent complex infor-

mation.9,20,24 Finally, available CDSS literature

emphasizes the importance of intuitive, user-friendly sys-

tems that provide easy access to information within

existing clinical workflow.12,24

Our results show that the methodology and approach we

applied to the SEER registry data can produce robust

predictive models of mortality in colon cancer using ml-

BBNs, and that these models have the potential to dra-

matically improve individualized estimation of prognosis.

In addition to providing subject-specific estimates (as

opposed to cohort-specific), our models achieved results

that were equivalent, and in many cases superior to AJCC

staging system alone. Table 4 details these results, with the

ml-BBNs producing AUCs, sensitivity, and specificity

within each estimation period, superior to AJCC-based

estimates. Our probability threshold for stratifying subjects

into high- and low-risk cohorts was designed to minimize

the trade-off between sensitivity and specificity rather than

to clinically optimize for rule-in/rule-out of patients rela-

tive to treatment. In a planned future clinical deployment,

we will report on sensitivity and specificity at a range of

predicted probabilities based on the ROC curve analysis in

order to allow clinicians and patients to use results at their

own level of risk tolerance. In this manner, the models are

adaptable to both patient and physician needs.

When used as a tool to estimate probability of outcome,

each ml-BBN model has the ability to provide a patient-

specific estimate of survival at a specific follow-up time

point (12, 24, 36, and 60 months). This personalized esti-

mate of mortality uses readily obtainable information about

patient demographics, clinical parameters, and disease

staging. To illustrate this point, Table 5 details an example

in which we evaluate a 63-year old black male whose colon

cancer is AJCC Stage N0M0. Our first calculation shows

the case assuming a T3 tumor, with an 11 % probability of

mortality—whereas a T4 tumor increases this probability

to 30 %. Within the T4 tumor sizing, a histologic grade 1

tumor is associated with a 22 % probability of mortality

within 12 months, while a histologic grade 4 tumor

increases this probability to 54 %. With these types of

TABLE 2 continued

B.

12-month cohort (%) 24-month cohort (%) 36-month cohort (%) 60-month cohort (%)

N = 128,324 N = 114,040 N = 100,733 N = 77,402

Range % dead % alive Range % dead % alive Range % dead % alive Range % dead % alive

Regional nodes examined

B2 43.3 18.7 B2 38.7 18.3 B1 34.0 15.2 0 31.5 15.7

3–9 20.0 28.2 3–9 21.8 29.3 2–8 21.2 27.9 1–8 23.0 30.4

10–16 17.5 28.4 10–16 19.8 28.2 9–14 22.8 30.1 9–14 23.3 19.2

17? 11.7 24.0 17? 13.7 23.6 15? 16.7 26.3 15? 17.3 34.3

Regional nodes positive

0 57.7 66.8 0 55.2 69.8 0 54.8 72.0 0 55.4 74.4

1 6.1 10.0 1 7.0 10.0 1 7.5 9.9 1–2 14.2 15.2

2–3 8.6 10.6 2–3 10.1 10.1 2–3 10.7 9.6 3–6 14.0 7.5

4? 18.7 11.5 4? 20.5 9.1 4? 20.5 7.6 7? 12.7 0.0

Age at diagnosis (years)

B61 15.7 31.2 B61 18.4 31.3 B60 17.8 32.7 B63 22.5 36.5

62–72 19.5 27.6 62–72 20.4 28.3 61–71 19.8 24.6 63–74 23.7 32.2

73–80 25.0 23.3 73–80 24.6 23.8 72–80 27.0 27.2 75–82 26.3 21.9

81? 39.9 17.9 81? 36.6 16.6 81? 35.3 15.5 83? 27.5 9.4
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case-specific estimates, the clinician and patient can work

together to develop a therapy plan, which takes into

account individual patient risk estimates as well as patient

risk tolerance.

Recent literature has shown substantial variance in

outcomes within AJCC TNM stages, emphasizing the

need for system-based approaches that can develop per-

sonalized estimates of outcome using individual case
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attributes (specifically, readily available clinical and

pathological variables).25 The ml-BBN models provide

information about how the disease factors influence

outcome and how the disease factors influence each

other. Further, these models extend AJCC TNM staging

to incorporate information about patient demographics,

tumor grading, and histology, in order to provide patient-

specific assessments of risk that can in turn be used to

make informed treatment decisions. In testing, these ml-

BBN models have been shown to improve on the sen-

sitivity and specificity of the AJCC TNM Staging (Sixth

Edition) alone.
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In addition, using the models to derive patient-specific

survival estimates, we can also observe interesting patterns

of data associations that engender novel insights and

hypotheses. For example, number of positive nodes, nodes

examined, and AJCC TNM N stage are highly associated

with one another and with mortality. What is unexpected,

however, is that the estimated number of positive nodes is

directly influenced by the nodes examined, and if too few

nodes are examined, then subjects are more likely to be in

the deceased group independent of nodal staging. This may

indicate the importance of adequate nodal retrieval and its

potential role as a quality indicator of case-specific N

staging.26,27 Based on our ml-BBN model structure and

distributions we know that AJCC TNM staging remains a

useful predictor of mortality.

The ml-BBN model can also be used to derive charts of

individual survival estimates, as in Table 6, which shows

that the AJCC TNM M stage is an extremely significant

predictor of outcome, while T and N stage differentiate

between outcomes within M stage group. Tumor grade is

an important independent predictive variable in the

12-month model, as shown in Table 7, but is eclipsed by

the importance of AJCC T stage in the 60-month model

analysis. The model structures also show this relationship.

Grade is a first-degree associate of mortality in the

12-month model, but not in the 60-month model. These

tables show how individual staging components influence

survival at different times in the post-treatment follow-up

period. AJCC T and N stage influence survival estimates in

non-metastatic patients at both 12 and 60 months, as they

provide additional information on the severity of non-

metastatic disease. However, in patients with distant met-

astatic disease, T and N stage only influence survival

estimates in the 12-month period, and they have a negli-

gible effect on 60-month survival estimates. This may

indicate that systemic disease may have lower short-term

mortality in the context of less-aggressive local disease.

The colon cancer ml-BBN developed in this study has

shown several key advantages. First, this technology

allowed us to capture complex, nonlinear, and in some

cases, nonobvious patterns in a very large and heteroge-

neous data set. The use of machine-learning technology has

allowed us to thoroughly mine a large and complex registry

set relatively quickly and to identify many different pat-

terns that exist in the data that inform us about tumor

biology. Second, ml-BBNs are graphical models, more

easily allowing the user to interpret model structure and

design in a straightforward, intuitive manner. Further, as

the ml-BBNs are multi-dimensional constructs, the absence

of any given feature or features does not necessarily render

the model unusable. More importantly, other features in the

model can be used to estimate recursively outcome even

when certain data elements (clinical and pathological

variables) are missing. This construct also makes the

models somewhat resistant to data errors, as not only are

independent features used to estimate outcomes, but are

also used to estimate one another. Finally, ml-BBNs are

computationally efficient CDSS and can be used to render

many complex rule sets in a computationally efficient

manner.

The value of our findings is threefold: (1) the method-

ological proof-of-concept that ml-BBNs can be applied to

this type of registry data and produce very robust results

TABLE 3 First-degree variable associations to mortality in each ml-

BBN mortality model

First degree

associations to

mortality

12-month

model

24-month

model

36-month

model

60-month

model

Number of primaries Yes Yes No No

AJCC TNM path M Yes Yes Yes Yes

Tumor grade Yes Yes No No

Race/ethnicity Yes Yes Yes Yes

Sex Yes Yes Yes No

Age at diagnosis Yes Yes Yes Yes

Regional nodes

positive

Yes Yes Yes No

Regional nodes

examined

Yes Yes Yes No

AJCC TNM path T Yes Yes Yes Yes

Surgical procedure Yes Yes Yes No

Primary tumor

location

Yes Yes No No

Primary tumor

histology

Yes Yes Yes No

AJCC TNM path N No No No Yes

TABLE 4 Comparative performance statistics—AJCC TNM Staging (Sixth Edition) vs. ml-BBN

Mortality AUC PPV NPV Sensitivity Specificity

AJCC BBN AJCC BBN AJCC BBN AJCC BBN AJCC BBN

12 months 0.75 0.85 36.2 % 74.4 % 88.7 % 85.1 % 36.2 % 51.4 % 88.6 % 94.0 %

24 months 0.76 0.85 54.6 % 79.9 % 81.1 % 79.7 % 54.6 % 62.7 % 81.1 % 90.3 %

36 months 0.77 0.85 67.7 % 81.8 % 72.2 % 73.9 % 67.7 % 69.9 % 72.2 % 84.5 %

60 months 0.77 0.85 85.9 % 84.2 % 47.7 % 64.8 % 85.9 % 88.7 % 47.7 % 55.5 %
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that are statistically comparable and in some instances

superior to the AJCC staging system, (2) the insights that

the ml-BBN graphical models provide about disease pro-

cess and survival, and (3) the ability to use the inferential

capability of the statistically validated ml-BBN models to

calculate patient-specific estimates of survival. This is

evidenced by the ROC AUCs, as well as the positive and

negative predictive values reported previously. The SEER

data, coupled with our ml-BBN model formulation and

classifier was able to predict accurately patient outcomes

given sufficient model flexibility and interdependence

among prognostic factors. We expect these results to be

reproducible for other disease sites outside of colon cancer.

Given highly varied outcomes, the ability to use advanced

computer modeling approaches not only to better under-

stand disease outcomes but also to understand how they

apply to a specific patient will be important in patient care

and clinical trial design as well as incorporation of CDSS

in the clinical pathway. The high AUCs (0.85) of our

models show that the ml-BBNs have a high discriminatory

capacity in estimating survival within a defined period

following initial cancer treatment. These high AUCs are

TABLE 5 Estimating 12-month survival given T, N, M stages, grade, age, and race

Independent prognostic factors in the ml-BBN model Outcome

Age at diagnosis Tumor grade Race Regional nodes positive Sex TNM path M TNM path T Mortality

No Yes

61–72 AA Up to 0 M 0 3 88.9 11.1

61–72 AA Up to 0 M 0 4 69.6 30.4

61–72 1 AA Up to 0 M 0 4 78.2 21.8

61–72 4 AA Up to 0 M 0 4 45.7 54.3

TABLE 6 12- and 60-month

mortality according to AJCC

(v6) TNM stage

TNM path

T

TNM path

N

TNM path

M

Alive at

12 months

TNM path

T

TNM path

N

TNM path

M

Alive at

60 months

Yes No Yes No

T1 N0 M0 88.5 11.5 T1 N0 M0 51.3 48.7

T2 N0 M0 91.4 8.6 T2 N0 M0 55.4 44.6

T3 N0 M0 88.2 11.8 T3 N0 M0 47.4 52.6

T4 N0 M0 67.8 32.2 T4 N0 M0 15.8 84.2

T1 N1 M0 90.9 9.1 T1 N1 M0 46.6 53.4

T2 N1 M0 91.4 8.6 T2 N1 M0 48.1 51.9

T3 N1 M0 86.2 13.8 T3 N1 M0 35.9 64.1

T4 N1 M0 70.6 29.4 T4 N1 M0 11.5 88.5

T1 N2 M0 78.4 21.6 T1 N2 M0 41.5 58.5

T2 N2 M0 88.0 12.0 T2 N2 M0 42.4 57.6

T3 N2 M0 78.2 21.8 T3 N2 M0 19.2 80.8

T4 N2 M0 58.8 41.2 T4 N2 M0 5.8 94.2

T1 N0 M1 26.6 73.4 T1 N0 M1 1.5 98.5

T2 N0 M1 48.8 51.2 T2 N0 M1 8.8 91.2

T3 N0 M1 52.4 47.6 T3 N0 M1 0.9 99.1

T4 N0 M1 29.3 70.7 T4 N0 M1 3.0 97.0

T1 N1 M1 48.5 51.5 T1 N1 M1 8.0 92.0

T2 N1 M1 61.4 38.6 T2 N1 M1 10.5 89.5

T3 N1 M1 62.8 37.2 T3 N1 M1 0.5 99.5

T4 N1 M1 55.4 44.6 T4 N1 M1 3.9 96.1

T1 N2 M1 52.1 47.9 T1 N2 M1 32.5 67.5

T2 N2 M1 50.4 49.6 T2 N2 M1 15.3 84.7

T3 N2 M1 48.6 51.4 T3 N2 M1 0.4 99.6

T4 N2 M1 43.5 56.5 T4 N2 M1 2.2 97.8
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further confirmed using Kaplan-Meier (log rank) analysis

that shows high, statistically significant odds ratios.

Finally, when compared with the AJCC staging system

alone, our ml-BBN models showed superior sensitivity and

specificity in estimating mortality. Our methodology has

the potential to dramatically expand the toolsets available

to clinicians in order to tailor personalized treatment plans,

to improve outcomes, and to empower patients through

education about their disease while leveraging robust

CDSS.

While the models developed in this study do not

explicitly provide an estimate of response to therapy, we

believe that these recurrence and mortality risk assessment

methods can be used at the point of care by physicians to

estimate outcomes that are much more specific for an

individual patient. This will then facilitate patient educa-

tion and counseling. Two well-known examples currently

in use are Adjuvant!Online and the Memorial Sloan Ket-

tering Colon Cancer Nomogram. Adjuvant!Online was

designed as an evidence-based tool to assist clinicians with

evaluating the potential benefit of chemotherapy in breast

cancer patients.28 It uses the SEER database to derive a

background estimate of mortality and then uses literature-

based estimates for chemotherapy benefit.29 A more rele-

vant example is the Memorial Sloan Kettering Colon

Cancer Nomogram, which includes chemotherapy, and

uses a 1,320-subject institutional registry cohort, yielding a

concordance index (a metric similar to an AUC) of 0.77.30

Both the Memorial Sloan Kettering nomogram and our

large SEER-derived ml-BBN model allow the clinician to

input case-specific information and to derive patient-spe-

cific estimates of survival. Finally, a current example of

how prognostic estimates are used in guiding therapy is the

OncotypeDX test marketed by Genomic Health for use in

node-negative, ER/PR positive breast cancer.31 The On-

cotypeDX does not explicitly indicate the likely benefit that

a patient will receive from chemotherapy, in fact 1 study

shows that patients in all risk cohorts receive some benefit

from chemotherapy.32 While the data would appear to

show that all patients benefit, not all patients have the same

magnitude of benefit; hence prognostic tools allow clini-

cians to develop an estimate of the potential magnitude of

therapeutic benefit for a specific patient.

Finally, we recognize certain limitations in this study. The

SEER database population is predominantly Medicare/Med-

icaid based, and it tends to have a bias toward older subjects

and among the older records, toward white subjects. Second,

the SEER database lacks recurrence and chemotherapy data,

which prohibits us from drawing direct inference about these

important factors. The primary methodological limitation in

computer modeling is the risk of overfitting the data—of

trying to draw broad conclusions from a model that is

representative of a study sample. To address this risk, we:

(1) used a large sample size, (2) made use of machine-

learning algorithms that are designed to produce robust

models, and (3) performed cross-validation analysis to

evaluate interset variance within the ml-BBN models.

Narrow confidence intervals between cross-validation sets

TABLE 7 12- and 60-month mortality with AJCC (v6) TNM T stage and primary tumor grade as primary ml-BBN drivers (independent

prognostic factors in the ml-BBN model)

Tumor grade (differentiation) TNM Path T Alive at 12 months Tumor grade (differentiation) TNM Path T Alive at 60 months

Yes No Yes No

Well differentiated T1 89.4 10.6 Well differentiated T1 48.0 52.0

T2 91.7 8.3 T2 53.6 46.4

T3 87.1 12.9 T3 40.0 60.0

T4 55.0 45.0 T4 4.8 95.2

Moderately differentiated T1 86.9 13.1 Moderately differentiated T1 47.8 52.2

T2 91.0 9.0 T2 53.1 46.9

T3 86.3 13.7 T3 37.8 62.2

T4 50.3 49.7 T4 4.9 95.1

Poorly differentiated T1 75.1 24.9 Poorly differentiated T1 45.7 54.3

T2 88.9 11.1 T2 52.0 48.0

T3 77.5 22.5 T3 32.6 67.4

T4 36.4 63.6 T4 4.5 95.5

Undifferentiated T1 62.5 37.5 Undifferentiated T1 38.9 61.1

T2 84.3 15.7 T2 50.6 49.4

T3 68.0 32.0 T3 31.9 68.1

T4 26.8 73.2 T4 4.2 95.8
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imply that these models are robust, indeed. It is also

important to recognize that the SEER database is not sen-

sitive generally to the noteworthy improvements over time

that have advanced treatment for this disease. Finally,

confounding the issue is the lack of any data on chemo-

therapy and limited data on radiotherapy within the SEER

database.

In summary, we were able to successfully apply a

computer-based CDSS tool using ml-BBNs to provide

personalized estimates of survival in colon cancer. These

ml-BBNs were based on patient demographics and clinical

and staging information at specific post-treatment follow-

up times. Unlike traditional AJCC TNM staging, the colon

cancer ml-BBN developed in this study accounts for tumor

heterogeneity and missing information, and provides

insights as to how multiple readily available patient and

disease-specific variables collectively influence oncologi-

cal outcome. As such, the colon cancer ml-BBN provides

time-dependent, individualized mortality risk assessment to

facilitate physicians making informed treatment decisions,

thereby facilitating individual patient education about their

disease and providing case-specific treatment recommen-

dations. Further, this ml-BBN may ultimately improve

clinical trial design.
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