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Abstract 

Introduction: This paper explores the use of machine learning and Bayesian classification models to 

develop broadly applicable risk stratification models to guide disease management of health plan 

enrollees with substance use disorder (SUD). While the high costs and morbidities associated with SUD 

are understood by payers, who manage it through utilization review, acute interventions, coverage and 

cost limitations, and disease management, the literature shows mixed results for these modalities in 

improving patient outcomes and controlling cost. Our objective is to evaluate the potential of data mining 

methods to identify novel risk factors for chronic disease and stratification of enrollee utilization, which 

can be used to develop new methods for targeting disease management services to maximize benefits to 

both enrollees and payers. 

Key words: substance use disorder; Bayesian belief network; chemical dependency; predictive 

modeling 

Methods: For our evaluation, we used DecisionQ machine learning algorithms to build Bayesian 

network models of a representative sample of data licensed from Thomson-Reuters’ MarketScan 

consisting of 185,322 enrollees with three full-year claim records. Data sets were prepared, and a stepwise 

learning process was used to train a series of Bayesian belief networks (BBNs). The BBNs were validated 

using a 10 percent holdout set. 

Results: The networks were highly predictive, with the risk-stratification BBNs producing area under 

the curve (AUC) for SUD positive of 0.948 (95 percent confidence interval [CI], 0.944–0.951) and 0.736 

(95 percent CI, 0.721–0.752), respectively, and SUD negative of 0.951 (95 percent CI, 0.947–0.954) and 

0.738 (95 percent CI, 0.727–0.750), respectively. The cost estimation models produced area under the 

curve ranging from 0.72 (95 percent CI, 0.708–0.731) to 0.961 (95 percent CI, 0.95–0.971) 

Conclusion: We were able to successfully model a large, heterogeneous population of commercial 

enrollees, applying state-of-the-art machine learning technology to develop complex and accurate 

multivariate models that support near-real-time scoring of novel payer populations based on historic 

claims and diagnostic data. Initial validation results indicate that we can stratify enrollees with SUD 

diagnoses into different cost categories with a high degree of sensitivity and specificity, and the most 

challenging issue becomes one of policy. Due to the social stigma associated with the disease and ethical 
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issues pertaining to access to care and individual versus societal benefit, a thoughtful dialogue needs to 

occur about the appropriate way to implement these technologies. 

Background 

In 2007, an estimated 19.9 million persons aged 12 or older were current illicit drug users, and 17.0 

million people were heavy drinkers.
1
 Results from one recent study indicate that the risk for cocaine 

dependence is 5–6 percent among all those who have used the drug.
2
 While it is generally acknowledged 

that substance use disorder (SUD) has high healthcare costs, comorbidities, and economic costs to the 

nation, the development of systematic approaches to disease management in this population has been 

handicapped by what is still a limited knowledge of disease mechanics compared to diseases such as 

cancer and heart disease, for which we tend to have a more advanced understanding of disease physiology 

and genetics supporting evidence-based population intervention and treatment models. While we are 

making tremendous strides in understanding the genetics and physiology of SUD, there is still a need to 

enhance our tool set for intervention and management. Further, SUD contributes not only to behavioral 

health costs but also to overall medical costs, as shown in a large retrospective cohort study by Clark et al. 

that identified significant medical cost increases in a study cohort of 148,457 Medicaid beneficiaries.
3
 

This paper explores the use of machine learning and Bayesian classification models to develop 

broadly applicable models for the identification of disease risk factors and stratification models to guide 

the placement of health plan enrollees with SUD into appropriate disease management programs. While 

the high costs and morbidities associated with SUD are understood by payers, who manage it through 

utilization review, acute interventions, coverage and cost limitations, and disease management, the 

literature shows mixed results for these modalities in improving patient outcomes and controlling cost. A 

selection bias has been documented in disease management whereby members who are already sick are 

more motivated to take advantage of disease management.
4
 This selection bias may contribute to reduced 

success rates since enrollment and management often occur in response to an acute episode rather than 

prophylactically to prevent acute episodes. As the literature shows, in appropriately targeted populations, 

disease management can prove very successful.
5
 However, the literature is also severely critical of the 

current state of the art in developing personalized, stratified models of care in behavioral health, as 

evidenced by the disappointing results in the Matching Alcoholism Treatments to Client Heterogeneity 

(Project MATCH) study, and there is vigorous debate in the literature over the benefit of these types of 

models.
6–8

 Our objective is to evaluate the potential of data mining methods to address some of the 

shortcomings of current practice. 

Our method has the ability to address many of these limitations by supporting more complex rule sets 

that can effectively account for the inherent complexity of comorbid interactions. Further, we focused on 

developing our tools from a claims database since this represents a common substrate available to both 

payers and providers, as the literature often laments the lack of access to good data sets for evaluation.
9
 

By focusing on the most widely available data, we are seeking to develop a set of methods and tools that 

have the potential to improve patient risk stratification and enrollment in disease management programs 

to address current shortcomings in practice by developing an individualized model of risk stratification 

using broad populations and readily available data.
10

 

While there is extensive literature on the comorbidities and impact that SUD has on other acute and 

chronic conditions, these multiple, complex relationships are often studied in a bivariate context. 

Assembling these into a robust, useful rule set is nontrivial. Some work has been done using regression 

modeling and clustering; however, these methods suffer from limitations with respect to their ability to 

codify complex nonlinear relationships, ingest and model large sample sizes, and provide transparent 

outputs to users. 
11–13

 

We have selected machine-learned Bayesian belief network (BBN) probabilistic classifiers because 

they address several of these key issues. BBNs allow for the representation of complex, nonlinear systems 

in a transparent format that is tractable, or easily comprehensible, to the user.
14, 15

 BBNs are effective at 

representing complex biological systems in a robust manner.
16, 17

 The use of Bayesian networks has 
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historically been limited by a high level of inherent computational complexity. However, the advent of 

increased computational power and the development of machine-learning algorithms allow us to 

overcome these challenges and develop novel BBNs directly from large, heterogeneous training 

cohorts.
18, 19

 The use of BBNs and machine learning is well established in research and clinical practice in 

areas such as risk prognosis, diagnosis, and expected outcomes in heart disease, cancer, and trauma.
20–23

 

We were unable to identify existing literature exploring the application of this method to risk stratification 

of SUD enrollees using claims data; thus, we believe this is a novel assessment of the potential value of 

this technology. 

Methods 

For our evaluation, we used DecisionQ machine-learning algorithms to build Bayesian network 

models of a representative sample of data licensed from Thomson-Reuters’ MarketScan. The sample 

contained detailed insurance claim information on 400,000 randomly selected MarketScan enrollees for 

the years 2004, 2005, and 2006. The data records (which are deidentified) have information on 

demographics, inpatient admissions (including detailed procedure codes, diagnosis codes and charges), 

outpatient services, and pharmacy claims. We restricted the sample to the 185,322 individuals who 

remained enrolled all three years. We used the resulting models to identify key relationships and identify 

combinations of factors to calculate both the individual risk probability of SUD as well as an individual 

estimate of total annual future claims given demographic factors and comorbid conditions. Future claims 

estimates can also be derived by making assumptions about treatment and the impact that treatment may 

have on utilization. 

Definition of SUD and Training Data Set 

Thomson Reuters provided a set of 42 tables of information on a randomly selected sample of 

400,000 enrollees, aged 18 to 65, from their MarketScan database. The data, which cover the years 2004, 

2005, and 2006, include details on each inpatient, outpatient, and pharmacy claim together with 

demographic information by enrollee. The database is deidentified, but each record has a unique 

identification field suitable for matching information by enrollee across the various tables. 

We began with 29.7 million data records describing three years of clinical history of 400,000 

enrollees. Therefore, the process of arranging selected elements by enrollee (―flattening‖ the data) for 

modeling was nontrivial. To accomplish it we used SAS routines to merge tables within category, but 

across years. We then sorted each table by encounter date and used a series of Java applications 

(operating across a JDBC-ODBC bridge) to extract and aggregate required database fields by unique 

enrollee. The Java routines produced comma-delimited text files, which were incorporated into a 

Microsoft Access database. 

Upon analysis, we observed that 185,322 of the 400,000 MarketScan population were present in all 

three years of data. We used that subgroup as our study population. This provided us with a well-defined, 

representative cohort of adult enrollees. A randomly selected training set of 166,999 (roughly 90 percent) 

was used for model building. The remaining 10 percent or 18,623 individuals became the holdout set, 

which we used subsequently to validate the models. We identified a set of International Classification of 

Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes directly associated with the diagnosis 

of SUD. We defined a database enrollee as having SUD if any of the diagnosis codes in our set appeared 

in a claim record, either as the primary diagnosis or a nonprimary diagnosis. All enrollees in the three-

year cohort that met these criteria were coded as such in our final database. (See Appendix A.) 

BBN Model Development 

We used our prepared data set to train a series of BBNs to estimate individual risk of SUD as well as 

expected future healthcare utilization. BBNs have increased in popularity as a method to classify and 

interpret complex clinical and pathologic information because they more accurately reflect the nonlinear 

and multifactorial nature of biology.
24

 A Bayesian network encodes the joint probability distribution of all 

the variables in a domain by building a network of conditional probabilities. It uses conditional 

independence assumptions to make the representation tractable. The networks are directed graphs that 
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incorporate parent-child relationships between nodes. Essentially, they provide a hierarchy of how the 

knowledge of a priori evidence influences the downstream likelihood of an event (e.g., ―I know that 

enrollee X has hypertension; therefore, the probability of kidney disease relative to the overall population 

is y‖). The model offers a transparent, graphical representation of these probabilities that a user can 

interpret, unlike a neural network, which uses complex calculations that cannot be represented to the user 

and is thus opaque. 

We used machine learning to calculate prior probabilities and identify the structure of our BBN. Prior 

probabilities are derived from the data to be modeled by calculating distributions of discrete states for 

categorical variables or using binning to convert continuous variables into categorical variables. A 

heuristic search method is used to generate hypothetical models with different conditional independence 

assumptions in order to identify the best model structure. The heuristic search method used in this study 

benefits from two proprietary advances, one a more efficient caching and query system that allows us to 

consider an order of magnitude more data, and the other a very efficient search architecture that provides 

additional flexibility in searching for the optimal model structure. These improvements have been shown 

to perform 1 to 5 percent better than a standard heuristic algorithm in terms of model quality score.
25

 

The modeling team applied the heuristic search algorithms in a stepwise modeling process to 

optimize the robustness and utility of each BBN. The objective of this process was to produce the most 

robust classifier with respect to identification of SUD or stratification into expected utilization categories 

through better attribute selection and continuous testing. 

 
This process can be summarized as follows:  

1. preliminary modeling identifies appropriate machine learning parameters, data quality issues, and 

confounding attributes that reduce model accuracy;  

2. global modeling sets appropriate machine-learning parameters, prunes attributes, and allows 

investigators to observe the global data structure;  

3. naïve modeling operates with an assumption that features driving a specific dependent outcome 

of interest are mutually independent, therefore providing insight into the direct contribution of 

individual features; and  

4. focused modeling runs on subsets of variables identified in the prior steps to derive a more 

focused BBN than that obtained in global modeling.  

 

Continuous testing is used to score networks to identify the best network and structure, with the 

objective of balancing between reducing the risk of overfitting while exploring features exhaustively. 

Given the high dimensionality of the data being used and the problem under consideration, the team 

recognized that to maximize predictive power, a series of different classifiers should be trained and 

independently evaluated using the test set, and then the best classifiers for risk stratification and cost 

estimation should be selected and used to derive insights and rules for disease management enrollment. 

As a result, we produced two sets of models: risk stratification models for the identification of SUD 

enrollees in the broad population, and cost/treatment models for the estimation of utilization, cost, and 

therapy response within different enrollee subsets. 

The network was validated using a holdout data set of 18,623 enrollees for interset validation. The 

validation set was further broken into 10 different subsets to provide an estimate of both classifier 

accuracy and variance of classifier accuracy. The test set predictions were then used to calculate receiver 

operating characteristic (ROC) curves (sensitivity vs. specificity) for each model. The ROC curve was 

calculated by comparing the predicted value for each variable to the known value in the test set on a case-

specific basis and then used to calculate area under the curve (AUC), a metric of overall model quality.  

Results 

From our MarketScan population we calculated some basic statistics to describe our study population. 

Of total enrollees in 2004, 23.9 percent dropped out in 2005, and 53.7 percent had dropped out by 2006. 
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Of enrollees who had any SUD diagnosis in 2004, 21.3 percent dropped out in 2005, and 52.5 percent had 

dropped out by 2006. These numbers are essentially comparable. Looking at the members of our 

population who remained enrolled for the entire study period, 4.04 percent had a diagnosis of SUD (either 

primary or nonprimary, inpatient or outpatient) during the study period, and in each of 2004, 2005, and 

2006 the rate of SUD diagnosis ranged from 1.5 to 1.7 percent. 

Having identified our SUD enrollees, we applied machine learning to build a Bayesian classifier to 

describe the associations in our commercial enrollee population. Many clinical and demographic factors 

are involved in risk stratifying enrollees with SUD. Estimating related utilization involves multiple 

diseases and multiple diagnoses with multiple mechanisms. BBNs allow us to represent these complex 

relationships in an efficient and user-friendly manner. Each classifier we trained has a unique hierarchy of 

information, or structure. These structures help us to identify how different variables influence the 

expected likelihood of an outcome, such as SUD diagnosis or expected cost range. The structure of the 

BBN is meaningful in itself in that it provides a hierarchy of conditional dependence, or the likelihood of 

a given outcome given known information. It is important to note that this is not causality, but rather 

conditional dependence, which can be thought of as co-occurrence. 

Figure 1, one of our risk stratification models, uses a full BBN. In this model, we have flattened each 

enrollee data record to look at the presence or frequency of individual values of Major Diagnostic 

Category (MDC), a classification used in the Thompson Medstat database to group diagnosis into major 

categories (e.g., SUD or cardiovascular disease). 

In this figure we can interpret the structure relative to our outcomes of interest, which are highlighted 

in blue: mdc20CountOut (the count of outpatient SUD diagnoses in a given claims year), mdc20CountInp 

(the count of inpatient SUD diagnoses in a given claims year), and anyCDAnyYear (whether the enrollee 

had any diagnoses of SUD during the study period). These outcomes have conditional dependence 

(represented by lines in the figure) with the following first-order predictors (highlighted in red): 

industry_inp1 (enrollee industry), mdc19CountInp and mdc19CountOut (counts of inpatient and 

outpatient behavioral health disorder diagnoses), and mdc4CountOut (count of outpatient diseases of the 

respiratory system). These first-order predictors are not necessarily causative of SUD, but rather are the 

most information-rich features for estimating the likelihood of a concurrent SUD diagnosis. These first-

order predictors are conditionally dependent in their own right with second-order predictors (highlighted 

in yellow) including diseases of the nervous systems; diseases of the ear, nose, and throat; diseases of the 

circulatory system; diseases of the kidney and urinary tract; and other health services. The full BBN 

contains multiple nonlinear relationships representing conditional dependence between variables that 

predict our outcome of interest. 

Figure 2, on the other hand, details a naïve BBN classifier designed to stratify individual enrollee 

costs based on historical data. The naïve BBN assumes that features associated with a specific dependent 

outcome of interest are mutually independent. It therefore provides insight into the direct information 

contribution of individual features. It also supports the development of quantitative contribution reports. 

This classifier uses available prior information to provide a specific estimate of cost range. Hence, in 

Figure 2, all the features that are connected to the 2006 cost range outcome (2006PaidRange, in the center 

of the diagram) influence the estimate of prospective enrollee cost. Hence, all features except those 

excluded from the network (upper left) act as first-order predictors with varying weights according to 

their respective goodness of fit (strength of association) with the dependent outcome. Knowledge of 

demographics and claims history can be used to estimate prospective cost. 

Figure 3 details an additional naïve BBN, in this instance focused on general population risk 

stratification. The objective of this BBN is to use historical claims record data to develop an estimate of 

individual risk of SUD, based upon the overall prevalence in our three-year study cohort, that can be used 

to identify risk factors that can be disseminated to clinicians and providers to assist in diagnosis. Similar 

to the model in Figure 2, this model uses historical diagnoses, pharmacy data, enrollee demographic data, 

and utilization data, but rather than estimating annual cost, it estimates the likelihood of SUD diagnosis 

within a three-year enrollment period. 
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For each of the BBNs discussed above, we used our 10 percent holdout set consisting of 18,623 

enrollees to validate the models for robustness and statistical quality. For each model, we input the 

holdout test set and calculated positive and negative predictive values and area under the curve for each 

model. The tables detail the validation results for both the risk stratification models and the cost/treatment 

models. 

We tested four different risk stratification models, and identified two risk stratification models with 

strong characteristics as measured by AUC. These models produced AUCs for SUD positive of 0.948 (95 

percent confidence interval [CI], 0.944–0.951) and 0.736 (95 percent CI, 0.721–0.752), respectively, and 

SUD negative of 0.951 (95 percent CI, 0.947–0.954) and 0.738 (95 percent CI, 0.727–0.750), 

respectively. We also developed a risk stratification model to segment enrollees positive for SUD into a 

likely SUD category. For further validation, we used our holdout set and our best risk estimation model to 

assess the sensitivity of detection and predictive value at different probability thresholds. To clarify, 

because BBNs are probabilistic, the user has the option of deciding what level of probability constitutes a 

positive or negative prediction. Table 1 uses our optimal risk stratification model and details sensitivity, 

specificity, and negative and positive predictive values, as well as estimated cases detected per 100,000 

enrollees and number of false positives per true positive as a measure of model robustness. 

In addition to evaluating three-year risk stratification, we also assessed the use of the multiyear model 

to risk score enrollees on a prospective year. To do this, we used our holdout set of enrollees and used 

2004–2005 characteristics to risk score enrollees for a diagnosis of SUD in 2006. We then stratified our 

enrollee population using the probability of SUD and selected ranked cohorts in sets of 50, 100, 250, and 

500. One of the challenges in risk stratifying SUD enrollees is that we believe the condition to be 

pervasively underdiagnosed as a result of social stigma, ethical issues, limited treatment options, and poor 

reimbursement.
26, 27

 In order to try to address this effect, we calculated sensitivity (rate of detection) and 

predictive value (accuracy) on both a one-year and two-year diagnosis threshold for each ranked cohort. 

Our results are summarized in Table 2. Each ranked cohort is listed individually, and we calculated the 

sensitivity (detection rate) of an SUD claim for each of 2005 and 2006 and 2005/2006 together. It is 

important to note that these are only claims, and there may be enrollees who are clinically indicated but 

for whom no claims were filed. We also calculated the positive predictive value, or the probability that an 

enrollee flagged as a high SUD risk had a claim for SUD in 2005, 2006, or either. We believe that this 

number is negatively biased due to the underdiagnosis of SUD. The optimum cohort appears to be the top 

250 group. In this group, we can successfully identify one out of three enrollees for two-year risk, and 70 

percent of our estimates for this group are accurate. 

We also used our holdout set to evaluate the predictive power of five different BBNs to estimate the 

2006 cost based on prior years (2004 and 2005). Based upon these statistics, the best two predictive 

models are the Naïve Inclusive Cost Model and the Demographics, Diagnoses, and Cost Model. We 

elected to use the Naïve Inclusive Cost Model for our insights and rules because of the higher input 

dimensionality it supports. Table 3 details AUC statistics for each range of expected cost. 

Our validation analysis showed that our classifiers are robust and can be used to risk stratify 

diagnosed enrollees and estimate individual expected costs with a high degree of accuracy. To further 

support this analysis, we also used our holdout set of 18,623 to estimate 2006 cost using 2004–2005 data 

while suppressing data from each enrollee’s 2006 claims record. To do this, we applied our prospective 

cost/utilization estimation model (depicted in Figure 2) to predict next-year cost ranges as described in 

Table 3. The result is a set of estimates of next-year cost assuming no disease management for SUD. We 

then compared the estimated cost range to the actual known cost range in 2006. Table 4 details the 

comparison of cost ranges between the predictions and the actual known costs in 2006. In 64 percent of 

predicted cases, costs were predicted in the correct range, and in 80 percent of cases, costs were within 

one range of accuracy.  
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Discussion 

As we move into an era of evidence-based, information-driven personalized care, there is a need for 

tools and methods that support individualized patient disease management. While there has been 

interesting early work in these types of approaches for SUD, the results have largely been 

disappointing.
28–31

 However; studies have shown that, if properly implemented, proactive targeted 

intervention and therapy matching can have a favorable impact on patient outcomes and costs.
32, 33

 The 

current paradigm is focused on benefits limitation, broad-based disease management, and carving out 

behavioral health benefits with success measures focused on total savings rather than individual benefit.
34 

Our objective in this study was to develop a novel approach—one where we use sophisticated 

classification models to identify very specific enrollee subpopulations, some as small as a handful of 

patients, with very different utilization profiles. These models allow us to develop highly individualized 

estimates of utilization and the potential benefit of disease management given prior utilization history of 

those who have been diagnosed with SUD and are thus candidates for disease management. Thus, with 

validated models we can stratify our disease management efforts and enroll patients into different service 

levels based upon forward-looking estimates of both utilization and the potential impact that disease 

management may have on future utilization within the known SUD population. 

We can use the models to identify novel insights, extract rules, and develop case studies of how the 

models would perform when applied to a novel population. Within these populations, we can use 

enrollee-specific historical information to calculate enrollee-specific estimates of costs over the next 12 

months and likely cost savings resulting from successful intervention and disease management, allowing 

payers and disease managers to develop stratified service levels that are appropriate to the expected risks 

and benefits of disease management in specific subgroups. As an example, we can estimate the relative 

risk of recurrent SUD diagnosis in those patients who have been identified through diagnosis using claims 

history. Table 5 and table 6 detail the relative risk of a new SUD claim over the next three years based 

upon inpatient and outpatient diagnoses in the first year of enrollment. These tables use only the primary 

ICD-9 code from the first claim in 2004, with the first inpatient claim in Table 5 and the first outpatient 

claim in Table 6, and this data is used to calculate the probability of an SUD diagnosis in the subsequent 

three years and corresponding relative risk. The first column also details expected prevalence based upon 

our study population. This type of data can be used to focus enrollment efforts on patients who would 

benefit most from disease management support. 

The ability to estimate utilization and cost further allows us to detail the relative increase in expected 

annual cost of selected chronic diseases and trauma when an enrollee also has a diagnosis of SUD. 

Further, we have flagged additional conditions, such as HIV and eye disorders, which have known 

associations with SUD.
35

 Table 7 details the expected annual cost differential, on an annual basis, for 

enrollees diagnosed with selected chronic conditions both with and without SUD. In addition to looking 

at selected high-cost chronic diseases, we also detail several conditions where SUD has a surprising cost 

impact. Several of these relationships have already been identified in the literature in terms of the 

relationship to cost, utilization, and outcomes in respiratory disease, trauma, and infectious disease.
36–38

 

Note that these estimates include only cost estimation derived from diagnosis and do not include other 

factors such as historic pharmacy utilization, which further impact expected cost. 

We can also combine multiple known factors in the model to produce combined estimates of risk and 

cost. In Table 8, we use an enrollee’s pharmacy history (central nervous system [CNS] drugs) and an 

outpatient diagnosis of diseases of the hepatobiliary system and pancreas to calculate the risk of SUD—in 

this instance, 31.3 percent, or a 7.8  relative risk. 

We can then use the cost models to estimate the expected cost distribution of the enrollee with and 

without SUD. Table 9 details expected next-year cost distribution without SUD, while Table 10 details 

the expected next-year cost distribution of an identical case with SUD: the enrollee has a pancreatic 

disorder and is using some type of CNS drug. Without SUD, the annual cost of this enrollee is expected to 

be above $10,000 only 43.6 percent of the time. With SUD, the annual cost of this enrollee is expected to 

exceed $10,000 73.3 percent of the time. 
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As a further analysis, we used our validated cost model to estimate hypothetical potential savings 

attributable to disease management. We sought to estimate the reduction in 2006 total enrollee cost if 

enrollees with SUD were successfully treated at the end of 2005, making the assumption that successful 

disease management of SUD would change utilization patterns. Accordingly, we suppressed variables that 

describe utilization in 2004 and 2005 and all variables related to 2006 utilization, and we compared the 

estimated cost distributions of all 18,623 enrollee cases in our holdout set between those who had SUD 

and identical matched cases without SUD. Using the analysis above, we calculated an estimated 

hypothetical 2006 post-treatment cost for each enrollee and calculated an estimated savings against the 

actual known 2006 cost for each enrollee. We then ranked the entire cohort by SUD risk score and then 

ranked within each scoring group by estimated savings. We then calculated average per-enrollee savings 

for each cohort (top 50, 100, 250, and 500) and calculated estimated savings of the following: 

 

 Top 50 enrollees, average savings $23,284 per enrollee 

 Top 100 enrollees, average savings $12,317 per enrollee 

 Top 250 enrollees, average savings $4,927 per enrollee 

 Top 500 enrollees, average savings $2,463 per enrollee 

 

This analysis indicates, for example, that selecting the top 500 enrollees (out of our 18,623-enrollee 

test set) produces an expected cost reduction benefit of approximately $2,500 in annual savings, 

excluding the costs of disease management and treatment. Restricting our set to the top 250 cases 

produces an expected savings of approximately $5,000 per enrollee, and by further restricting our disease 

management population to the top 100 enrollees, we increase our expected average reduction to more than 

$12,000 per patient. Using this approach, we can stratify a disease management population and tune our 

marginal benefit to maximize both enrollee benefit and financial return in light of the expected costs and 

success rate of a given disease management program. The actual return is highly dependent on the 

individual payer and treatment modality, as the cost and success rate of interventions varies greatly, from 

as much as $30,000 per month at the Betty Ford Clinic to as little $300 per month for outpatient programs 

or $147 per month for clinic-based methadone treatment.
39, 40

 These cost estimates need to be further 

adjusted based on expected success and recidivism rates, as these rates can vary significantly.
41, 42

 

Accurate, validated stratification tools can allow payers to make significantly more informed decisions 

about how disease management strategies can be employed in a stratified way to maximize benefit to both 

enrollee and plan. 

One interesting phenomenon in our stratification exercise was that the expected enrollee savings did 

not necessarily appear to scale with general utilization. Many patients in lower utilization categories 

appeared to score higher expected savings than patients in higher utilization categories. This led us to 

examine specific cases in the model to attempt to understand why this phenomenon occurred. For 

example, for enrollees with cancer necessitating inpatient care, 90.1 percent of SUD-negative enrollees 

cost more than $10,000 in 2006, while 97.3 percent of SUD-positive enrollees cost more than $10,000 in 

2006. In contrast, for enrollees with respiratory disorders necessitating inpatient care in 2006, 78.3 

percent of SUD-negative enrollees cost more than $10,000 in 2006, while 90.4 percent of SUD-positive 

enrollees cost more than $10,000 in 2006. While enrollees with a diagnosis of cancer and SUD have a 

much higher expected cost than enrollees with a diagnosis of respiratory disorder and SUD ($70,756 vs. 

$48,876), the impact of SUD status is more pronounced in respiratory patients than in cancer patients. 

Ruling out SUD moved 12.1 percent of respiratory patients but only 7.3 percent of cancer patients below 

$10,000 in costs in 2006 and resulted in an overall expected cost differential of $8,363 for respiratory 

disease as compared to $6,189 for cancer. As we add other factors, such as medication history, we can 

develop a rich picture of enrollee segments where SUD appears to impact utilization and cost in the 

context of other chronic diseases. The difference between these enrollee populations is that SUD appears 

to impact long-term chronic conditions more heavily than short-term acute conditions. A reasonable 

hypothesis for this difference is that in conditions where patient compliance and effective pharmacy 

management are critical to disease management, SUD may negatively impact compliance and 

significantly increase outpatient and inpatient resource utilization. 
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At this point, the greatest challenge in implementation is not a technical difficulty but rather a policy 

challenge. In addition to issues of intervention and disease management costs and success rates that 

produce widely varying returns for different disease management populations, we also need to account for 

concerns regarding patient privacy, potential stigma, and restricted access to care when potential benefits 

are stratified. We can address this dilemma to some degree through the development of enrollment rules 

that focus on patients post diagnosis, the use of enrollment techniques that allow patients to move 

between disease management service levels or opt out of the program, and the use of thresholds that 

severely reduce false positives in identifying those diagnosed with SUD who would best benefit from 

disease management.
43

 For example, we could enroll all enrollees who are diagnosed with SUD and 

ensure that we reach all potential beneficiaries, but at the cost of providing disease management services 

to those who are unlikely to benefit, both wasting resources and potentially stigmatizing enrollees who 

have been diagnosed with SUD but for whom a disease management program may provide little benefit. 

The ability to use accurate stratification technologies has the potential to significantly improve disease 

management strategies and reimbursement policies relative to the current ―blunt‖ paradigm of benefits 

limitation for controlling behavioral health costs.
44

 

Conclusion 

Using this method, we can develop forward-looking stratified individual estimates of disease risk for 

each enrollee in our selected population that can be used to identify diagnosed patients at greatest risk of 

relapse. This estimate takes into effect utilization histories, comorbidities, chronic conditions, 

demographic data, and pharmacy usage of each enrollee. Importantly, we focused on data that are 

available currently and do not require complex or expensive collection mechanisms to be developed. 

Further, within this complex matrix, we can estimate 12-month costs (exclusive of disease management 

and treatment for SUD) for a given enrollee assuming either SUD relapse or SUD rule-out. This allows us 

to hypothetically match a given enrollee who has been diagnosed with SUD against an identical, SUD-

free enrollee to compare the hypothetical impact of SUD on cost. We can use this methodology to rank all 

appropriate potential disease management programs by i) total estimated cost and ii) total estimated cost 

differential attributable to SUD disease management, exclusive of disease management costs. These tools 

should allow payers and providers to make more informed and thoughtful decisions with respect to the 

design of stratified disease management programs. 

We have been able to successfully model a large, heterogeneous population of commercial enrollees, 

applying state-of-the-art machine learning technology to develop complex and accurate multivariate 

models that support near-real-time scoring of novel payer populations based on historic claims and 

diagnostic models. Our initial validation results indicate that we can stratify enrollees with SUD 

diagnoses with a high degree of sensitivity and specificity, and the most challenging issue becomes one of 

policy. Due to the social stigma associated with the disease and ethical issues pertaining to access to care 

and individual versus societal benefit, a thoughtful dialogue needs to occur about the appropriate way to 

implement these technologies. 

Future work is planned in which we will test these models further by evaluating them against other 

data sources and evaluate the social and economic ramifications of this methodology. 

 

Lawrence M. Weinstein, MD, ABHM, is a senior vice president at Catasys, Inc., a healthcare 

company headquartered in Los Angeles, CA. 

Todd A. Radano is an executive vice president and founder at DecisionQ Corporation in Washington, 

DC. 

Timothy Jack, MD, is a behavioral health medical director for Wellpoint Blue Cross and Blue Shield 

and a managed behavioral healthcare consultant in Los Angeles, CA. 

Philip Kalina, MS, is the director of modeling services at DecisionQ Corporation in Washington, DC. 

John S. Eberhardt III, is an executive vice president and founder at DecisionQ Corporation in 

Washington, DC. 



10 Perspectives in Health Information Management 6, Fall 2009 

  

Notes 

 

1. Substance Abuse and Mental Health Services Administration, Office of Applied Studies 

(2008). Results from the 2007 National Survey on Drug Use and Health: National 

Findings (NSDUH Series H-34, DHHS Publication No. SMA 08-4343). Rockville, MD. 

2. O’Brien, M. S., J. C. Anthony, L. E. O’Dell, A. A. Alomary, M. Vallee, G. F. Koob, R. 

L. Fitzgerald, and R. H. Purdy. ―Risk of Becoming Cocaine Dependent: Epidemiological 

Estimates for the United States, 2000–2001.‖ Neuropsychopharmacology 30 (2005): 

1006–18. 

3. Clark, R. E., M. Samnaliev, and M. P. McGovern. ―Impact of Substance Disorders on 

Medical Expenditures for Medicaid Beneficiaries with Behavioral Health Disorders. 

Psychiatric Services 60, no. 1 (2009): 35–42. 

4. Linden, A., J. L. Adams, and N. Roberts. Evaluation Methods in Disease Management: 

Determining Program Effectiveness. Washington, DC: Disease Management Association 

of America, 2006. 

5. Weisner, C. G.,T. Ray, J. R. Mertens, D. D. Satre, and C. Moore. ―Short-Term Alcohol 

and Drug Treatment Outcomes Predict Long-Term Outcome.‖ Drug and Alcohol 

Dependence 71, no. 3 (2003): 281–94. 

6. Alexander, J. A., T. A. Nahra, C. H. Lemak, H. Pollack, and C. I. Campbell. ―Tailored 

Treatment in the Outpatient Substance Abuse Treatment Sector: 1995–2005.‖ Journal of 

Substance Abuse Treatment 34, no. 3 (2008): 282–92. 

7. Angarita, G. A., S. Reif, S. Pirard, S. Lee, E. Sharon, and D. R. Gastfriend. ―No-Show for 

Treatment in Substance Abuse Patients with Comorbid Symptomatology: Validity 

Results from a Controlled Trial of the ASAM Patient Placement Criteria.‖ Journal of 

Addiction Medicine 1, no. 2 (2007): 79–87. 

8. Babor, T. F. ―Treatment for Persons with Substance Use Disorders: Mediators, 

Moderators, and the Need for a New Research Approach.‖ Journal of Methods in 

Psychiatric Research 17 (2008): s45–s49. 

9. Merkx, M. J. M., G. M. Schippers, M. J. W. Koeter, P. J. Vuijk, S. Oudejans, C. C. Q. de 

Vries, et al. ―Allocation of Substance Use Disorder Patients to Appropriate Levels of 

Care: Feasibility of Matching Guidelines in Routine Practice in Dutch Treatment 

Centres.‖ Addiction 102, no. 3 (2007): 466–74. 

10. Buhringer, G. ―Allocating Treatment Options to Patient Profiles: Clinical Art or 

Science?‖ Addiction 101, no. 5 (2006): 646–52. 

11. Collins, S. E., I. Torchalla, M. Schroter, G. Buchkremer, and A. Batra. ―Development 

and Validation of a Cluster-Based Classification System to Facilitate Treatment 

Tailoring.‖ Journal of Methods in Psychiatric Research 17 (2008): s65–s69. 

12. Chi, F. W., and C. M. Weisner. ―Nine-Year Psychiatric Trajectories and Substance Use 

Outcomes: An Application of the Group-Based Modeling Approach.‖ Evaluation Review 

32, no. 1(2008): 39–58. 

13. Weisner, C. G.,T. Ray, J. R. Mertens, D. D. Satre, and C. Moore. ―Short-Term Alcohol 

and Drug Treatment Outcomes Predict Long-Term Outcome.‖  

14. Jensen, F. An Introduction to Bayesian Networks. New York: Springer-Verlag, 1996.  

15. Hofman, J. M., and C. H. Wiggins. ―Bayesian Approach to Network Modularity.‖ 

Physical Review Letters 100, no. 25 (2008, June 23): 258701. 



Application of Multivariate Probabilistic (Bayesian) Networks to Substance Use Disorder Risk Stratification and Cost Estimation 11 

 

16. Robin, H., J. S. Eberhardt, M. Armstrong, R. Gaertner, and J. Kam. ―Interpreting 

Diagnostic Assays by Means of Statistical Modeling.‖ IVD Technology 12, no. 3 (2006, 

April): 55–63. 

17. Susan Maskery, Yonghong Zhang, Hai Hu, Craig Shriver, Jeffrey Hooke, and Michael 

Liebman. ―Bayesian Network Analysis of Breast Pathology Diagnoses.‖ Presented at the 

13th Annual International Conference on Intelligent Systems and Molecular Biology. 

Detroit, MI, June 25–29, 2005. 

18. Moraleda, J., and T. Miller. ―Ad+tree: A Compact Adaptation of Dynamic Ad-Trees for 

Efficient Machine Learning on Large Data Sets.‖ Proceedings of the 4th International 

Conference on Intelligent Data Engineering and Automated Learning, 2002. 

19. Moraleda, J. New Algorithms, Data Structures, and User Interfaces for Machine 

Learning of Large Datasets with Applications. Doctoral dissertation, Stanford University, 

Palo Alto, CA, December 2003. 

20. Burnside, E. S., D. L. Rubin, J. P. Fine, R. D. Shachter, G. A. Sisney, and W. K. Leung. 

―Bayesian Network to Predict Breast Cancer Risk of Mammographic Microcalcifications 

and Reduce Number of Benign Biopsy Results: Initial Experience.‖ Radiology 240, no. 3 

(2006): 666–73. 

21. Burd, R. S., M. Ouyang, and D. Madigan. ―Bayesian Logistic Injury Severity Score: A 

Method for Predicting Mortality Using International Classification of Disease-9 Codes.‖ 

Academic Emergency Medicine 15, no. 5 (2008): 466–75. 

22. Ho, K. M., and M. Knuiman. ―Bayesian Approach to Predict Hospital Mortality of 

Intensive Care Readmissions During the Same Hospitalisation.‖ Anaesthesia and 

Intensive Care 36, no. 1 (2008): 38–45. 

23. Biagioli, B., S. Scolletta, G. Cevenini, E. Barbini, P. Giomarelli, and P. Barbini. ―A 

Multivariate Bayesian Model for Assessing Morbidity after Coronary Artery Surgery.‖ 

Critical Care 10, no. 3 (2006): R94. 

24. Burnside, E. S., D. L. Rubin, R. D. Shachter, R. E. Sohlich, and E. A. Sickles. ―A 

Probabilistic Expert System That Provides Automated Mammographic-Histologic 

Correlation: Initial Experience.‖ American Journal of Roentgenology 182, no. 2 (2004): 

481–88. 

25. Moraleda, J. New Algorithms, Data Structures, and User Interfaces for Machine 

Learning of Large Datasets with Applications.  

26. Holder, Harold O., and James A. Blose. ―The Reduction of Health Care Costs Associated 

with Alcoholism Treatment: A 14-Year Longitudinal Study.‖ Journal of Studies on 

Alcohol 53, no. 4 (1992, July): 293–302. 

27. Karol, D. E., I. N. Schuermeyer, and C. A. Brooker. ―The Case of HS: The Ethics of 

Reporting Alcohol Dependence in a Bus Driver.‖ International Journal of Psychiatry in 

Medicine 37, no. 3 (2007): 267–73. 

28. Alexander, J. A., T. A. Nahra, C. H. Lemak, H. Pollack, and C. I. Campbell. ―Tailored 

Treatment in the Outpatient Substance Abuse Treatment Sector: 1995–2005.‖  

29. Angarita, G. A., S. Reif, S. Pirard, S. Lee, E. Sharon, and D. R. Gastfriend. ―No-Show for 

Treatment in Substance Abuse Patients with Comorbid Symptomatology: Validity 

Results from a Controlled Trial of the ASAM Patient Placement Criteria.‖  

30. Babor, T. F. ―Treatment for Persons with Substance Use Disorders: Mediators, 

Moderators, and the Need for a New Research Approach.‖  

31. Merkx, M. J. M., G. M. Schippers, M. J. W. Koeter, P. J. Vuijk, S. Oudejans, C. C. Q. de 

Vries, et al. ―Allocation of Substance Use Disorder Patients to Appropriate Levels of 

Care: Feasibility of Matching Guidelines in Routine Practice in Dutch Treatment 

Centres.‖  



12 Perspectives in Health Information Management 6, Fall 2009 

  

32. Rothbard, A. B., and E. Kuno. ―Comparison of Alcohol Treatment and Costs after 

Implementation of Medicaid Managed Care.‖ American Journal of Managed Care 12, 

no. 5 (2006): 285–96. 

33. Saitz, R., M. J. Larson, C. LaBelle, J. Richardson, and J. H. Samet. ―The Case for 

Chronic Disease Management for Addiction.‖ Journal of Addiction Medicine 2, no. 2 

(2008): 55–65. 

34. Hodgkin, D., C. M. Horgan,  D. W. Garnick, and E. L. Merrick. ―Benefit Limits for 

Behavioral Health Care in Private Health Plans.‖ Administration and Policy in Mental 

Health Services Research 36, no. 1 (2009): 15–23. 

35. Haimovici, Robert, et al. ―Risk Factors for Central Serous Chorioretinopathy: A Case-

Control Study.‖ Ophthalmology 111, no. 2 (2004): 244–49. 

36. London, J. A., G. H. Utter, F. Battistella, and D. Wisner. ―Methamphetamine Use Is 

Associated with Increased Hospital Resource Consumption among Minimally Injured 

Trauma Patients.‖ Journal of Trauma, Injury, Infection and Critical Care 66, no. 2 

(2009): 485–90. 

37. Bard, M. R., C. E. Goettler, E. A. Toschlog, S. G. Sagraves, P. J. Schenarts, M. A. 

Newell, et al. ―Alcohol Withdrawal Syndrome: Turning Minor Injuries into a Major 

Problem.‖ Journal of Trauma, Injury, Infection and Critical Care 61, no. 6 (2006): 1441–

45. 

38. Gangl, K., R. Reininger, D. Bernhard, R. Campana, I. Pree, J. Reisinger, et al. ―Cigarette 

Smoke Facilitates Allergen Penetration across Respiratory Epithelium.‖ Allergy 64, no. 3 

(2009): 398–405. 

39. Jones, E. S., B. A. Moore, J. L. Sindelar, P. G. O’Connor, R. S. Schottenfeld, and D. A. 

Fiellin. ―Cost Analysis of Clinic and Office-Based Treatment of Opioid Dependence: 

Results with Methadone and Buprenorphine in Clinically Stable Patients.‖ Drug and 

Alcohol Dependence 99, nos. 1–3 (2009): 132–40. 

40. The Addiction Recovery Guide. Available at 

http://www.addictionrecoveryguide.org/treatment/residential/centers.html (accessed June 

30, 2009).  

41. Cournoyer, L. G., S. Brochu, M. Landry, and J. Bergeron. ―Therapeutic Alliance, Patient 

Behaviour and Dropout in a Drug Rehabilitation Programme: The Moderating Effect of 

Clinical Subpopulations.‖ Addiction 102, no. 12 (2007): 1960–70. 

42. Weisner, C. G.,T. Ray, J. R. Mertens, D. D. Satre, and C. Moore. ―Short-Term Alcohol 

and Drug Treatment Outcomes Predict Long-Term Outcome.‖  

43. Karol, D. E., I. N. Schuermeyer, and C. A. Brooker. ―The Case of HS: The Ethics of 

Reporting Alcohol Dependence in a Bus Driver.‖  

44. Hodgkin, D., C. M. Horgan,  D. W. Garnick, and E. L. Merrick. ―Benefit Limits for 

Behavioral Health Care in Private Health Plans.‖  

 

 

 

http://www.addictionrecoveryguide.org/treatment/residential/centers.html


Application of Multivariate Probabilistic (Bayesian) Networks to Substance Use Disorder Risk Stratification and Cost Estimation 13 

 

 

Figure 1 

 

Diagnosis Co-occurrence 

 

 

 

 

 



14 Perspectives in Health Information Management 6, Fall 2009 

  

Figure 2 

 

Prospective Cost/Utilization Estimation Model 
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Figure 3 

 

SUD Risk Stratification Model 
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Table 1 

 

Sensitivity and Specificity of Risk Stratification Model—Three-Year Risk 

 
Threshold 

Probability of CD* Sensitivity Specificity

Detection per 

100,000* PPV

False Positives 

per True Positive NPV

4% (1.0x RR) 100% 85% 4,000 23% 3 100%

8% (2.0x RR) 100% 88% 4,000 27% 3 100%

12% (3.0x RR) 100% 90% 4,000 30% 2 100%

16% (4.0x RR) 100% 91% 4,000 32% 2 100%

20% (5.0x RR) 100% 91% 4,000 34% 2 100%

50% (12.5x RR) 100% 94% 3,994 44% 1 100%

75% (18.75x RR) 99% 96% 3,978 53% 1 100%

* Assumes natural rate of 4%  
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Table 2 

 

One- and Two-Year Risk Statistics: Sensitivity and Predictive Value 

 
Sensitivity 2005 Claim 2006 Claim 2005 or 2006 Claim

Subset of 50 11.8% 7.2% 7.3%

Subset of 100 22.8% 13.7% 14.3%

Subset of 250 47.3% 19.0% 29.7%

Subset of 500 86.2% 26.8% 54.7%

Positive Predictive Value 2005 Claim 2006 Claim 2005 or 2006 Claim

Subset of 50 84.0% 44.0% 86.0%

Subset of 100 81.0% 42.0% 84.0%

Subset of 250 67.2% 23.2% 70.0%

Subset of 500 61.2% 16.4% 64.4%  
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Table 3 

 

Area Under the Curve (AUC) Statistics for Cost/Utilization Models 

 
Prediction of 2006 Annual Paid Ranges

Under $2,500 $2,500 - $5,000 $5,000 - $7,500 $7,500 - $10,000 $10,000 - $25,000 $25,000 - $50,000 $50,000 or Greater

Naïve Inclusive Cost Model

Mean Area Under the Curve 87.0% 74.5% 75.7% 76.0% 81.2% 90.3% 96.1%

95% Confidence Lower Bound 86.2% 73.3% 74.5% 74.7% 79.6% 89.3% 95.0%

95% Confidence Upper Bound 87.8% 75.7% 77.0% 77.2% 82.8% 91.2% 97.1%

Demographics and Cost

Mean Area Under the Curve 78.8% 68.4% 72.1% 70.8% 77.2% 85.0% 89.2%

95% Confidence Lower Bound 77.8% 66.8% 70.6% 69.1% 75.8% 81.8% 85.4%

95% Confidence Upper Bound 79.8% 69.9% 73.6% 72.4% 78.5% 88.3% 92.9%

Demographics, Diagnoses, and Cost

Mean Area Under the Curve 85.9% 72.0% 76.1% 78.9% 84.8% 90.8% 94.0%

95% Confidence Lower Bound 85.1% 70.8% 74.8% 77.7% 84.0% 89.8% 92.3%

95% Confidence Upper Bound 86.6% 73.1% 77.5% 80.1% 85.7% 91.8% 95.7%

Inpatient Only Demographics, Diagnoses, and Cost

Mean Area Under the Curve 84.7% 71.0% 74.8% 77.1% 83.4% 90.9% 94.1%

95% Confidence Lower Bound 83.9% 69.4% 72.9% 75.7% 82.4% 89.4% 91.6%

95% Confidence Upper Bound 85.5% 72.5% 76.6% 78.4% 84.4% 92.4% 96.7%

CD Only Demographics, Diagnoses, and Cost

Mean Area Under the Curve 81.3% 68.7% 72.5% 70.9% 81.8% 85.8% 81.5%

95% Confidence Lower Bound 80.5% 67.7% 71.4% 69.6% 80.7% 83.5% 77.2%

95% Confidence Upper Bound 82.0% 69.7% 73.7% 72.2% 83.0% 88.1% 85.7%  
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Table 4 

 

Cost Range Accuracy 

 
Percent in Group

Same Range 64.1%

1 Range Difference 15.8%

2 Ranges Difference 7.4%

3 Ranges Difference 4.1%

4 Ranges Difference 6.6%

5 Ranges Difference 1.5%

6 Ranges Difference 0.5%

100.0%  
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Table 5 

 

Probability and Relative Risk of SUD from First 2004 Inpatient Diagnosis 

 

  Target  

Enrollees Driver (anyCdAnyYear) Relative 

per 100,000 (mdc1stInp04) No Yes Risk 

160 Behavioral disorders 56.0% 44.0% 10.9  

10 HIV 60.1% 39.9% 9.9  

10 Diseases of the eye 66.7% 33.3% 8.2  

60 

Injuries, poisonings and drug 

toxicity 71.9% 28.1% 7.0  

0 Newborn and neonatal conditions 75.0% 25.0% 6.2  

20 Multiple significant trauma 76.5% 23.5% 5.8  

270 Diseases of the respiratory system 80.1% 19.9% 4.9  

180 

Diseases of the hepatobiliary 

system 81.3% 18.7% 4.6  
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Table 6 

 

Probability and Relative Risk of SUD from First 2004 Outpatient Diagnosis 

 

  Target  

Enrollees Driver (anyCdAnyYear) Relative 

per 100,000 (Mdc1stOut04) No Yes Risk 

60 HIV 88.6% 11.4% 2.8  

290 

Diseases of the hepatobiliary 

system 88.7% 11.3% 2.8  

2,910 Behavioral disorders 91.4% 8.6% 2.1  

50 Burns 92.9% 7.1% 1.8  

3,290 Diseases of the respiratory system 93.6% 6.4% 1.6  

590 

Injuries, poisonings and drug 

toxicity 93.9% 6.1% 1.5  

350 Infectious and parasitic diseases 94.2% 5.8% 1.4  

3,980 Diseases of the digestive system 94.4% 5.6% 1.4  
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Table 7 

 

SUD Impact on 2006 Annual Expected Mean Cost of Chronic Disease 

 
Chronic Diseases Without SUD With SUD Difference Multiple

Respiratory Disease (Asthma,COPD) $29,622 $37,985 $8,363 1.28x

Cardiac Disease (CHF, CAD) $32,990 $40,899 $7,909 1.24x

Diabetes $27,271 $33,710 $6,440 1.24x

ESRD $28,627 $36,869 $8,242 1.29x

High-Risk Pregnancy $18,739 $32,189 $13,450 1.72x

Depression $20,202 $26,458 $6,256 1.31x

Trauma $41,927 $52,578 $10,652 1.25x

Other Conditions

Eye Disorders $15,651 $25,471 $9,820 1.63x

Burns $26,379 $39,786 $13,407 1.51x

ENT Disorders $26,624 $36,598 $9,974 1.37x

Skin Disorders $26,618 $36,036 $9,418 1.35x

HIV $22,913 $30,452 $7,539 1.33x  
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Table 8 

 

Calculated SUD Risk 

 

Probability 

of case  

Drivers  Target  

mdc1stOut06  thergrp_pharm1  thergrp_pharm3  anyCdAnyYear  

    No  Yes  

0.012% 7 08 08 68.7% 31.3%  
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Table 9 

 

Estimated Cost Assuming No SUD 

 

Probability 

of case  

Drivers  Target  

Any 

Cd0

6  

mdc1s

t 

Out06  

Thergrp 

_pharm

1  

Thergrp 

_pharm

3  

2006PaidRange  

     

up to 

$2,50

0  

$2,50

0 to 

$5,00

0  

$5,00

0 to 

$7,50

0  

$7,500 

to 

$10,00

0  

$10,00

0 to 

$25,00

0  

$25,00

0 to 

$50,00

0  

$50,00

0 plus  

0.012

%  
No  7  08  08  20.4% 15.8%  10.6%  9.7%  27.3%  11.7%  4.6%  
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Table 10 

 

Estimated Cost Assuming SUD 

 

Probability 

of case  

Drivers  Target  

Any 

Cd06  

mdc1st 

Out06  

Thergrp 

_pharm

1  

Thergrp 

_pharm

3  

2006PaidRange  

     
up to 

$2,500  

$2.500 

to 

$5,000  

$5,000 

to 

$7,500  

$7,500 

to 

$10,00

0  

$10,00

0 to 

$20,00

0  

$25,00

0 to 

$50,00

0  

$50,00

0 plus  

0.0%  Yes  7  08  08  3.3%  7.0%  6.9%  9.4%  36.8%  25.0%  11.5%  
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Appendix A 

IDC-9-CM Codes Associated with SUD 

Sections 660, 661, and 663 are excerpted from 

http://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixASingleDX.txt, part of the 

documentation of AHRQ’s HCUP Clinical Classification Software (CCS) 2008 

660—Alcohol-related disorders 

2910 2911 2912 2913 2914 2915 2918 29181 29182 29189 2919 30300 30301 30302 30303 

30390 30391 30392 30393 30500 30501 30502 30503 76071 9800 

661—Substance-related disorders 

2920 29211 29212 2922 29281 29282 29283 29284 29285 29289 2929 30400 30401 30402 

30403 30410 30411 30412 30413 30420 30421 30422 30423 30430 30431 30432 30433 30440 

30441 30442 30443 30450 30451 30452 30453 30460 30461 30462 30463 30470 30471 30472 

30473 30480 30481 30482 30483 30490 30491 30492 30493 30520 30521 30522 30523 30530 

30531 30532 30533 30540 30541 30542 30543 30550 30551 30552 30553 30560 30561 30562 

30563 30570 30571 30572 30573 30580 30581 30582 30583 30590 30591 30592 30593 64830 

64831 64832 64833 64834 65550 65551 65553 76072 76073 76075 7795 96500 96501 96502 

96509 V6542 

663—Screening and history of mental health and substance abuse codes 

3051 30510 30511 30512 30513 33392 3575 4255 5353 5710 5711 5712 5713 7903 V110 V111 

V112 V113 V118 V119 V154 V1541 V1542 V1549 V1582 V663 V701 V702 V7101 V7102 

V7109 V790 V791 V792 V793 V798 V799 

We further aggregated the above codes into eight groups based on the clinical experience of the 

authors: 

1. Alcohol related conditions: 

2910, 2911, 2912, 2913, 2914, 2915, 2918, 29181, 29182, 29189, 2919, 30300, 30301, 30302, 

30303, 30390, 30391, 30392, 30393, 30500, 30501, 30502, 30503, 3575, 4255, 5353, 5710, 

5711, 5712, 5713, 76071, 7903, 9800, V113, V791 

2. Antidepressants: 

30580, 30581, 30582, 30583 

3. Cannabis: 

30430, 30431, 30432, 30433, 30520, 30521, 30522, 30523 

4. Combinations of drugs: 
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2920, 29283, 30460, 30461, 30462, 30463, 30480, 30481, 30482, 30483, 30490, 30491, 30492, 

30493, 30590, 30591, 30592, 30593, 64830, 64831, 64832, 64833, 64834, 65550, 65551, 65553, 

7795 

5. Drug-induced mental disorders: 

29211, 2922, 29281, 29282, 29284, 29285, 29289, 2929, 33392, V110, V111, V112, V118, 

V119, V154, V1541, V1542, V1549, V6542, V663, V701, V702, V7101, V7102, V7109, V790, 

V792, V793, V798, V799 

6. Hallucinogens: 

29212, 30450, 30451, 30452, 30453, 30530, 30531, 30532, 30533, 76073 

7. Opiates: 

30400, 30401, 30402, 30403, 30410, 30411, 30412, 30413, 30470, 30471, 30472, 30473, 30540, 

30541, 30542, 30543, 30550, 30551, 30552, 30553, 76072, 96500, 96501, 96502, 96509 

8. Stimulants: 

30420, 30421, 30422, 30423, 30440, 30441, 30442, 30443, 3051, 30510, 30511, 30512, 30513, 

30560, 30561, 30562, 30563, 30570, 30571, 30572, 30573, 76075, V1582 

Chronic Disease Conditions Selected by the Authors 

Asthma 

Congestive heart failure 

Diabetes 

Chronic Obstructive Pulmonary Disease (COPD) 

Coronary artery disease 

End-stage renal disease 

High-risk pregnancy 

Depression 

 


